

Evaluation of Hurricane Sandy Coastal Resilience Program

Susan Taylor & Claire Goydan, Abt Associates

Amanda Bassow & Christina Kakoyannis, NFWF

Lisa Wainger & Virginia Institute of Marine Science

Rick Bennett FWS & Pete Murdoch USGS

National Conference on Ecosystem Restoration 2018, New Orleans, LA

DOI & NFWF Sandy Resilience Program

- Build community and ecological resilience through projects
- Fill knowledge gaps and science needs
- Measure project performance and benefits (metrics & evaluation)
- Identify best practices
- Apply lessons learned to future projects and conservation frameworks
- Communicate results

Sandy Program Components

- Project Implementation: 2013-2018
- Core Metrics Established: 2015
- Complete Evaluation: April 2018
- Long-term Monitoring: 2017-2023

Presentation Outline

- Describe evaluation methods and Sandy portfolio
- Discuss key findings
 - Project outcomes (projects implemented as intended and quality)
 - Resilience impacts (Ecological and Socioeconomic)
 - Cost effectiveness
 - Improved understanding
- Preliminary recommendations

Evaluation Methods

Biophysical indicators directly relevant to socioeconomic resilience *(estimated)*

Document(s)

Ecological Indicators

(measured)

Portfolio Overview

Findings: Implementation Lessons

- 80% of projects complete as of June 2018
- Staggered start dates (2013-2015)
- 54% of projects implemented as proposed

10% 0%

2012

2013

2014

2016

2017

2018

2019

2015

Findings: Implementation Lessons

- 46% of projects submitted formal amendments (majority – 75% – no cost schedule extensions)
- Major factors influencing not implementing as proposed: data or knowledge gaps, funding shortfalls, and permitting issues
- Permitting timeline top limiting factor for almost all project classifications

Findings: Outcome Achievement

Findings: Outcome Achievement

Objectives

Green Infrastructure

- Restoring lost habitat, improving water quality, and providing shelter for marine organisms
- Reducing nutrient loads through stormwater management

Activities

 Install green infrastructure: rain gardens, basins, permeable paving

Outcomes

- 124 structures installed
- $_{\odot}$ 26,000,000+ gal SW storage
- \odot 1,000+ acres improved SWM

Data Mapping Modeling

- $\circ\,$ Support long-term restoration and planning
- $\circ\,$ Improve hazard response
- $\,\circ\,$ Addressing data gaps and increasing data diversity

- Identify sand resources
- Quantify marsh capacity
- Document real-time storm impacts

 500+ products completed and tracked

Community Resilience Planning

- Addressing development through recreational enhancement
- $\,\circ\,$ Supporting local floodplain management and planning
- Creating plans for communities to implement

- $\,\circ\,$ Develop shovel-ready plans
- Develop tools, trainings
- Create conceptual designs

 28 plans complete, with 60%+ of completed projects secured additional funds

Findings: Resilience Benefits

- Ecological and socioeconomic benefits
- Assessed by leading indicators (e.g., ecological: improved fish habitat, improved vegetative cover, and improved avian species habitat)
- Detailed case studies to assess lag time
- Key focus of long-term monitoring

Findings: Ecological Outcomes

- Beach & Dune: quick biotic response for horseshoe crab spawning and migratory birds
- Marsh: removal of reeds (Phragmites) and perennial Pepperweed, reduced ponding/ increased flushing, water quality/salinity and nekton abundance (species richness)
- Aquatic Connectivity: immediate flushing of trapped sediment and return of crucial fish species, faster than expected.

Findings: Ecological Lag Time

Findings: Ecological Lag Time

Aquatic Connectivity projects begin to be complete beginning in 2015.

Initial water quality improvements can be seen a year after completion of project activities.

Fish passage (and therefore fish return) improves in the year following completion of project activities, and fish establish spawning populations seven years following.

DAM REMOVAL

	Year O	Year 1	Year 3	Year 7
CONNECTIVITY	Barrier prevents flow, traps sediment	Immediate sediment flushing and transport downstream, natural rocky streambed habitat exposed upstream	Bathymetry of stream and tributaries begins to restore, water temperature cools	Flow continues to improve
FISH	Habitat not suitable for fish, cannot progress upstream past barrier	Initial small return numbers on the first upstream run of key aquatic species (e.g. river herring, American shad, American eel)	Fish passage continues, change from warm to cool water fish species, more anadromous fish	Upstream spawning fish include recruits from the first upstream returns
FLOODING	Barrier or risk of failure can cause flooding	Immediate reduction in downstream inundation risk	Water levels continue to normalize, additional decrease in floodplain upstream	Water levels continue to normalize, additional decrease in floodplain upstream

Findings: Socioeconomic Outcomes

- Leading indicators and metrics monitored: *increased data analysis, acquisition, & delivery*
- Socioeconomic outcomes not explicitly measured, but interest from PI's to measure socioeconomic impacts
- Over half of the planning projects secured funding to implement next step

Outcome	Ultimate storm risk reduction benefit		
Reduced soil contamination	Decreased spread of contamination following storm event		
Improved vegetative cover	Decreased erosion, storm surge and wave energy		
Restored dunes	Increased beach stability, ability to buffer storm activity		
Increased beach width	Increased beach stability, ability to buffer storm activity		
Improved community planning	Improved practices to combat or avoid storm impacts		

Assessed:

Economic & Job Protection Recreation Education & Outreach Storm Risk Reduction

Findings: Cost Effectiveness

Findings: Improved Understanding

Summary / Lessons

- Achieving success requires synergies
 - Coordinating projects increases overall effectiveness
 - Coordination at portfolio scale supports targeted and strategic investments and evaluation (includes: metrics, cost outlines, &reporting)
- Communicating impacts
 - Measure the ecological and the "so-what"
 - Train staff/require PI's to measure socioeconomic benefits
- Implementation
 - Phased funding for innovative and new approaches
 - Early permitting/compliance, plan for adaptive management
 - Require and fund monitoring

Thank you!

- Questions: <u>Susan_Taylor@abtassoc.com</u>
- DOI Sandy Program: <u>https://www.doi.gov/hurricanesandy</u>
- NFWF Sandy Program: <u>http://www.nfwf.org/hurricanesandy/Pages/home.aspx</u>

BOLD THINKERS DRIVING REAL-WORLD IMPACT